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a b s t r a c t

We have devised two numerical methods of restoring incomplete band-limited NMR-signals to integrity
by either interpolating or extrapolating them. Both methods are based on use of the finite cardinal series,
whose filtering properties were discussed previously, to model signals. They require no prior knowledge
about the system under study, but only that the available parts of the signal were oversampled enough.
The methods were tested on two types of computer-simulated signal. It proved superior to the linear pre-
diction methods and Lagrange interpolation when applied to signals measured in highly inhomogeneous
magnetic fields. The extrapolation method was then applied to restore experimentally-measured refo-
cused FID-signals of a porous medium. The missing parts of the signal of up to several times the size
of its Nyquist period could be recovered by either method.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

In most NMR-studies, sampling an analogue signal at regular
intervals, whose length is dictated by the signal’s band-width, all
over the period during which it exists will be conceived as an ideal
way of recording data. A linear transformation of a thus acquired
data set will result in a spectrum or an image of the studied sys-
tem. Moreover, some of the samples of the digital signal in the time
domain are valuable physical quantities in their own right. The first
sample of FIDs, for example, is direct related to the equilibrium
magnetisation of various isotopes, which is – according to the Cur-
ie law – proportional to the quantity of those isotopes in the chem-
ical compound. Such measurements are also used to monitor the
amount of interstitial fluids in porous materials, e.g. water in ce-
ments during their settings [1,2] or liquid water in cryometric
studies [3,4]. This is also the case of the intensity and/or phase of
the summit of echoes measured in CPMG [5,6] or PGSE [7,8] exper-
iments, as they allow to measure spin–spin relaxation rates as well
as diffusion and flow propagators in fluids.

There are situations, though, in which only a part of the whole
signal is recorded. This can be done deliberately. Thus, the
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evolution periods in the indirect dimensions were often shortened
in the past to speed up lengthy multi-dimensional spectroscopic
experiments [9]. Much more efficient methods taking advantage
of irregular sampling saw the light of day recently [10–14]. In
MRI too, ‘partial Fourier imaging’ – methods that sample a reduced
part of the Fourier space – were shown to allow under certain cir-
cumstances to obtain images [15,16].

In some cases, on the other hand, an entire signal cannot be re-
corded effectively. Recording of the FID-signal normally ought to
commence at the moment corresponding to the middle of the last
pulse of the pulse sequence, which converts pure or mixed quan-
tum magnetic states of the spin system generated by that time into
solely detectable transverse magnetisation. This is, though, effec-
tively impossible when the same coil in the spectrometer’s probe
is used for both the RF-irradiation of the spins and the detection
of the signal those spins induce. Thus the detection can start only
after the last RF-pulse has ended or rather a short while after it
ended to avoid that intense RF-field generated by the transmitter
is fed into the sensitive receiver and burn it. Moreover, in various
experiments, a few first samples of the signal produced by the
ADC of the spectrometer were sometimes found to have the sig-
nal-to-noise ratio several orders of magnitude lower than that of
the rest of the data set [17,18], which was presumably brought
about by some short-lived transient phenomena in the spectrome-
ter’s coil, difficult to compensate for or take into account. This be-
comes a real problem when studying systems characterised by
high intrinsic inhomogeneity of their magnetic susceptibility or/
and fast NMR-relaxation, as then a significant initial part of the sig-
nal rich in physical, chemical, biological or medical information
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turns out to be missing. In spectroscopic applications, the delayed
acquisition is also known to result in artificially shifted spectra
with distorted base lines [19].

Besides the problem of recovering the initial part of truncated
FID-signals, there are situations where several parts of an NMR-
signal are badly damaged by intense sporadic noise. Those parts
have to be localised and restored in one way or another before
any further data processing [20].

Depending on a particular application, various methods of data-
processing were adopted to extract as reliably as possible physical
information from truncated or impaired signals. In general, the
information lost because some samples in the data-set are missing
is recovered from the prior knowledge of the form of the signal to
process or by making an assumption about it. Thus, various forms
of the linear prediction [21–25] and, closely related to them, the
‘filter diagonalisation’ [26,27] – which gained favour with spectros-
copists – model the regularly sampled temporal signal by a sum of
complex damped exponentials – thus assuming that the spectrum
of the signal contain Lorentzian lines only – and use those mathe-
matical auto-regression properties that result from this assump-
tion. These methods were most often used to extrapolate,
explicitly or not, the final part of an FID-signal, truncated at the
acquisition stage, and so to obtain spectra free of some of the faults
usually caused by truncation. Some of these methods, can be used
for ‘line editing’, to obtain a limited number of parameters of the
spectral lines, i.e. their frequencies, intensities and damping fac-
tors, without calculating the spectrum properly. To our knowledge,
the linear prediction was rarely applied to recover the initial part of
FID-signals and, when it was, was found to be highly sensitive to
noise, inextricably present in any experimental data [28,29].

Other methods were designed to calculate spectra from delib-
erately irregularly sampled signals. Some of them assume that
the FID-signal can be modelled by a trigonometric polynomial
and use the Lagrange interpolation to calculate regular samples
from irregular ones, before applying a fast Fourier-transforma-
tion to them [11]. In the maximum entropy methods [30,31],
on the other hand, the calculation of a spectrum is dealt with
as an inverse problem in which the most regular spectrum in
the entropy functional sense is chosen from those in accord with
the experimental data. The multi-way decomposition methods
take advantage of the fact that the spectra of three and more
dimensions can be viewed as a set of direct products of their
one-dimensional projections and fit the experimental data with
such a product in the least square sense [32,33]. A combination
of the linear prediction concepts and multi-way decomposition
resulted in a spectacular decrease in the amount of experimental
data necessary to calculate their spectrum [12]. More recently,
spectra could be approximated from periodogrammes of the
experimental data accurately enough to allow to elucidate the
chemical structure of the compound under study [34,14]. Most
of these methods make no assumption about the shape of the
spectral lines and so have potentially a wider range of applica-
bility than that of the methods based on the linear prediction.
Nevertheless, thus obtained approximations of the spectra allow
for certain faults and quantitative inaccuracies as long as it does
not hinder their interpretation. Nor were they Fourier-
transformed to see whether this method can be used for interpo-
lating, extrapolating or filtering the raw data in the time domain.

A rather different class of methods that could also be used for
processing truncated signals is based on their comparison with sig-
nals from data-bases. A number of packages designed for fitting the
signal direct in the time domain with various model functions, yet
aimed at obtaining their spectra were recently reviewed [35].

While the signals encountered in spectroscopic applications
have been the subject of numerous investigations, other types of
signals, e.g. those of fluids confined in porous media, have not
received due attention so far. Such signals usually have no partic-
ular structure. The intrinsic difference in magnetic susceptibility of
the various phases, i.e. solid matrix, confined fluid or confined gas,
of the porous medium at the microscopic scale results in hugely
inhomogeneous constant magnetic fields within the medium. This
inhomogeneity leads to deformations and broadening of the spec-
tral lines to up to several ppm’s, with characteristic defocalisation
times T�2’s being much shorter than the genuine spin-spin relaxa-
tion times T2’s [36,37]. Other physical systems, such as entangled
polymers, are known for their non-exponential relaxation [38]
and so cannot be processed by the linear prediction methods.
Finally, a number of mobile NMR spectrometers were designed
for in situ NMR investigations such as oil prospecting [39] or
surface [40] and three-dimensional studies of bulky samples, e.g.
rocks and building materials [41]. Static and RF magnetic fields
produced by these spectrometers are much more inhomogeneous
than those generated by the conventional NMR spectrometers
and the need for the development of adequate experimental proto-
cols for signals acquired on the mobile NMR devices has been
urged in literature [42].

A typical challenge encountered in the NMR of porous media
is to exactly and precisely measure the equilibrium magnetisa-
tion. As the signal defocus rapidly, taking the value of the first
sample produced by the ADC for that corresponding to the
beginning of the FID-signal results in great errors in the values
of thus determined physical quantities. Two different strategies
have been adopted to solve the problem. One consisted in using
more sophisticated and longer experimental protocols rather
than the single-pulse sequence. For example, to compensate
the effects of magnetic-field inhomogeneity in porous materials
and so to obtain images that give distribution of fluids in them
precisely, transverse magnetisation could be refocused by gener-
ating spin-echoes [43,2]. The equilibrium magnetisation fields in
the samples were then extrapolated from the intensities of the
successive echoes’ maxima assuming that relaxation is mono-
exponential. The latter assumption was sometimes found to be
inadequate, especially for systems where relaxation is mainly
driven by molecular diffusion in the highly inhomogeneous field
[43,44]. Alternatively the missing initial part of the FID-signal
could be somehow calculated from the part that could be mea-
sured experimentally. Naive approaches, such as the linear
extrapolation of the initial part of the FID-signal from the very
first digitised samples, showed quickly their limitations, though.
More sophisticated methods, usually requiring knowledge of the
form of the signal and so that of the system, proved more suc-
cessful. Thus the FID-signal could sometimes be supposed to
have a simple mono-exponential form [45]. Nonetheless, each
of these methods is suitable for processing the signals of a par-
ticular class of systems and so open no general way for the
extrapolation of the initial part of an arbitrary FID-signal.

We recently proposed an algorithm for both filtering the trun-
cated NMR data-sets in the time domain from high frequency noise
and repairing an limited number of isolated samples in those sets
badly damaged by intense sporadic noise [20,46]. The signal was
approximated by a finite cardinal series. We supposed that the
NMR-signal can often be viewed as a band-limited function, but
made no other assumptions about its form. This makes it particu-
larly suitable for processing signals of porous materials. The meth-
od proved applicable to both echoes and FID’s as long as they were
over-sampled.

In the present paper, we shall tackle the problem of the res-
toration of broad zones of impaired band-limited oversampled
NMR-signals by interpolating or, in the case of the initial part
of FID-signals, extrapolating them. Within the development the
non-uniform sampling theory, the reconstruction of one-
dimensional band-limited signals from incomplete irregular sets



Fig. 1. Decomposition of a continuous band-limited signal (solid line) into a sum of
sinc-functions (dotted lines); empty circles represent samples of the signal at
regular moments of the time sp. Here X = Xs > X0.
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of their samples was studied extensively by mathematicians
[47,48]. One of the most efficient reconstruction method consists
in periodically recopying the signal to reconstruct and approxi-
mating it by a series of trigonometric polynomials [49]. Unlike
the approach mentioned higher [11], where the exact correspon-
dence between the reconstructed and available samples is
sought for, here one looks for a least-square approximation of
the latter imposing on the frequencies of the polynomials to
be regularly spread over the, supposedly continuous, spectral
band of the signal to process. The method proved successful
when the interval over which the signal was sampled was exten-
sive enough and the interval between any two adjacent irregular
samples was shorter than the Nyquist period of the signal, as
determined by the sampling theorem [50–52]. The restoration
of continuous signals from severely truncated data-sets with
gaps wider than the Nyquist period, contrariwise, has received
little attention, possibly because the problem of reconstruction
of the continuous signal becomes intrinsically ill-conditioned,
when the density of its irregular samples approaches the Nyquist
frequency and any mathematical proof of numerical stability of
the reconstruction is lost. Those few authors who claimed to
have interpolated signals over intervals broader than the Nyquist
period gave no details of their observations [53,49]. Thus, as far
as we know, no quantifiable results has been reported on the
performance of interpolation over broad intervals by trigonomet-
ric polynomials. Furthermore, one of the most recent reports
[54] suggested that the question of the influence of the extent
of truncation on the quality of reconstruction of the signal or
that of mere possibility of such reconstruction are still largely
neglected.

In our opinion, the reconstruction by series of trigonometric
polynomials and that by cardinal series are philosophically similar,
as each of the methods is based on one of the general expressions
of band-limited functions. The essential difference consists in the
fact that the former method requires a periodisation of the signal
while the latter is free of such requirement. In the past, we already
investigated the effects of the degree of truncation and that of the
extension of the interval over which the signal is sampled on the
performance of the cardinal series method [46] and suggested
how to control these effects. To our knowledge, no similar study
on the trigonometric series, which would be no doubt very useful
for those concerned with processing NMR-signals, has been re-
ported. And this is why we shall limit ourselves in this paper to
the discussion of the cardinal series only.

We shall evaluate how suitable the cardinal series are for the
interpolation of a large number of adjacent samples missing in
the NMR-signal and that of extrapolation of the initial part of the
FID-signal. Both methods can be applied to any band-limited sig-
nal, provided, as it will later transpire, their measurable parts are
oversampled. Moreover the noise level of thus restored signals
can turn out to be reduced compared to the original ones owing
to the filtering properties of the series discussed in the past [46].

This manuscript is structured as follows: we shall first intro-
duce some mathematical properties of the band-limited signals,
which will make it easier to understand the algorithms of methods
of interpolation and extrapolation of NMR-signals, whose detailed
theoretical description will follow. The methods’ performance and
limits will then be evaluated by applying them to computer-
simulated signals and compared to those of other reconstruction
methods currently used by NMR-spectroscopists. Tests will focus
on the size of the missing domain that can be reconstructed in rela-
tion to the size and oversampling level of available parts of the
data. Finally we shall apply the extrapolation method to truncated
FID-signals, experimentally acquired under conditions of highly
inhomogeneous magnetic fields, to determine the equilibrium
magnetisation of the sample.
2. Theory

2.1. Band-limited functions

Most analogue NMR-signals x(t), should they be free of elec-
tronic noise, are band-limited functions: they have in general com-
plex spectra ~xðxÞ of a limited spectral width X0 and can be
expressed as

xðtÞ ¼
Z X0

2

x¼�X0
2

~xðxÞ expðixtÞdx ð1Þ

Here the spectral width is defined so that X0/2p corresponds to the
‘sweep width’ in Hertz in the common usage of the NMR-spectros-
copists. Such functions have some remarkable properties [52]. In
particular they can be expressed exactly by an infinite cardinal ser-
ies (see also Fig. 1):

xðtÞ ¼
X1

p¼�1
apsinc

X
2
ðt � spÞ ð2Þ

where sinc stands for the cardinal sine function:

sincðaÞ ¼ sin a
a

ð3Þ

X is the spectral width of the series, the quantities sp are moments
of the time regularly spaced by a period ds = sp+1 � sp and the ap are
complex coefficients, which depend on X and sp, yet are almost
never determined by them uniquely.

For a set of ap to exist and so for Eq. (2) to be verified, the spec-
tral width of the series has to be equal to or larger than that of the
signal

X P X0 ð4Þ

and the so called sampling frequency Xs = 2p/ds – the frequency at
which the signal is sampled – has to be larger than a certain thresh-
old dependent on X0 and X, i.e.:

Xs P
XþX0

2
ð5Þ

The latter two inequalities constitute what we shall call the ‘gener-
alised Nyquist condition’. It reduces to the ordinary Nyquist condi-
tion Xs P X0 when X = X0.

The values of the signal x(t) at different moments of the time t
turn out to be interdependent. Indeed Eq. (2), for instance, is met
when
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ap ¼
X
Xs

xðspÞ ð6Þ

Therefore the value of x(t) at an arbitrary t can be calculated from its
values at sp. When the signal is sampled at the Nyquist frequency,
i.e. at the lowest possible frequency Xs = X0 to correctly record all
its harmonics, all the x(sp) are needed for interpolation of the signal
x(t) at t within intervals sp < t < sp+1. This is why we shall often refer
hereafter to X0 and 2p/X0 as to Nyquist frequency and Nyquist per-
iod, respectively. If, on the other hand, the signal was oversampled,
i.e. if Xs > X0, the whole information about the value of the signal
x(t) will be encoded more than once in the values of x(sp). Several
mathematical theorems suggest that this redundancy in x(sp) can
be used to restore the continuous signal x(t), even when a relatively
large number of sequential values of x(sp) is missing. It is on this
property of the locally oversampled band-limited functions that
the methods of interpolation and extrapolation of NMR-signals pro-
posed hereafter rely.

2.2. Signal interpolation

Let there be an arbitrary complex analogue NMR-signal y(t) dig-
itised at a finite number N of arbitrary moments of the time
t1 < t2 < ��� < tN to give samples yn = xn + dxn, where complex
xn = x(tn) and dxn stand for values of the noise-free signal and
Gaussian non-correlated noise of the standard deviation
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjdx2ji=2

p
, respectively. We suggest to restore the entire ana-

logue signal within the interval [t1, tN] by modelling it as a finite
series of truncated cardinal sine functions:

xðtÞ �
XPsup

p¼Pinf

apsinc
X
2
ðt � spÞ ð7Þ

In the past we showed [20,46] that, the series of Eq. (7) approxi-
mates the modelled signal x(t) within [t1, tN] to the extent of the
computer precision, when sp – the positions of the cardinal sine
functions’ maxima – are set regularly within ½sPinf ; sPsup� ¼
½t1 � 6ds; tN þ 6ds�. Here we chose Pinf = int(t1/ds) � 6, Psup = int(tN/
ds) + 6 and sp = pds. In a similar way, we now suggest to set X
and sp so that the generalised Nyquist condition is met and to fit
the available N samples yn with the series of the right-hand side
of Eq. (7) in the least-square sense, to determine a set of values
ap:

Minap ;ðPinf6p6PsupÞ
XN

n¼1

yn �
XPsup

p¼Pinf

apsinc
X
2
ðtn � spÞ

������
������
2

ð8Þ

and to introduce the thus found coefficients into Eq. (7) to interpo-
late the signal. Within the Bayesian theory for solving inverse prob-
lems [55,56], this amounts to finding maximum likelihood values of
ap.

When used for filtering band-limited NMR-signals recorded
during a finite period of the time from high-frequency noise, the
closer X is set to X0 the better the filter performs, so long as the
Nyquist condition is met [20,46]. More intuitively, the smaller
the value of X, the more slowly the cardinal sine functions in the
series of Eq. (7) tend towards zero when |tn � sp| increases and
so the more suitable they are for correlating distant samples of
the signal. The period ds, on the other hand, was found to have
no influence on the filter performance. To continue to benefit from
the filtering properties of the cardinal series and to minimise the
calculation time, we suggest to set the constant parameters of
the cardinals series of Eq. (7) as previously:

Xs ¼ X ¼ 1:1�X0 ð9Þ

The minimum of Eq. (8) can in theory be found analytically by
the pseudo-inverse method
Ax ¼ Mt
xMx

� ��1
Mt

xY ð10Þ

where Ax is a column vector whose elements constitute a set of the
coefficients ap that minimise the expression of Eq. (8)

Ax ¼

aPinf

..

.

aPsup

0
BB@

1
CCA ð11Þ

Mx is a matrix

Mx ¼
sinc Xðt1�sPinf Þ

2 � � � sinc Xðt1�sPsupÞ
2

..

. ..
.

sinc XðtN�sPinf Þ
2 � � � sinc XðtN�sPsupÞ

2

0
BBB@

1
CCCA ð12Þ

Y is a column vector whose elements are the samples of the exper-
imentally acquired signal

Y ¼

y1

..

.

yN

0
BB@

1
CCA; ð13Þ

The subscript x is to indicate that we deal here with reconstruction
of the function x(t) itself, in contrast to what will be done in the
extrapolation method described in the next section. In practice,
though, the matrix Mt

xMx will often be ill-conditioned, as very dif-
ferent sets of the coefficients ap may lead to almost equally good
approximations of the minimum [20,46]. Here we solved this prob-
lem by replacing the matrix Mt

xMx by a truncated singular value
approximation [57], in which the eigenvalues smaller than the
rounding error of our computer are set to zeros, while preserving
all the other eigenvalues as they are. This allows to select among
the various sets ap the one of the lowest energy. Keeping in mind
this substitution, we shall continue hereafter to write Mt

xMx for
briefness.

After an Ax has been found, the value of the interpolated signal
sx(t) as well as the standard deviation r0x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjds2

x ji=2
p

of its
Gaussian noise dsx inherited from the Gaussian noise dx of the
samples can be calculated respectively as

sxðtÞ ¼ Vt
xðtÞAx ¼ Vt

xðtÞ Mt
xMx

� ��1
Mt

xY ð14Þ

and

r0xðtÞ
r
¼ Mx Mt

xMx
� ��1

VxðtÞ
��� ��� ð15Þ

where

VxðtÞ ¼
sinc Xðt�sPinf Þ

2

..

.

sinc Xðt�sPsupÞ
2

0
BBB@

1
CCCA ð16Þ

and k�k stands for vector norm.
Thus sx(t) results from a linear transformation of yn’s and the

standard deviation r0xðtÞ of its noise depends on the moment t at
which it is interpolated, the spectral width X of the series, the mo-
ments tn’s at which the signal was sampled by the ADC and, in the-
ory, the locations sp’s of the sinc-functions’ maxima. Nevertheless,
in practice, the latter were found [20,46] to have no effect as long
as they were placed at a regular interval ds within the interval
[t1 � 6ds, tN + 6ds].

2.3. Recovery of the absolute value of the FID-signal at the origin

Let now y(t) be an FID-signal and the moment of the time t1 at
which its first sample could be produced by the ADC of the
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spectrometer be strictly positive. Here t1 corresponds to at least
the ‘dead time’ of the spectrometer and often even a longer period
[17] during which some transient phenomena hinder the start of
data acquisition. One may then want to extrapolate the signal into
the interval [0, t1], where zero is associated with the true beginning
of the signal.

If we suppose that magnetisation was refocused at t = 0, then
Eq. (1) assumes a particular form:

xðtÞ ¼ expði/Þ
Z X0

2

x¼�X0
2

~xðxÞ expðixtÞdx ð17Þ

where / stands for the phase that determines the direction of the
RF-field in the rotating frame and the spectrum ~xðxÞ is now real.
The latter will usually be positive all over [�X0/2, X0/2], thus corre-
sponding to the pure absorption spectrum. Nevertheless the meth-
od described below applies even when ~xðxÞ takes negative values.

Eq. (17) implies that

xð�tÞ ¼ expð2i/ÞxðtÞ� ð18Þ

where the asterisk stands for complex conjugate. This expression is
purely mathematical and does not suppose that the signal x(t) can
be measured or even physically exists at negative t.

Let us take a simple, yet important example of an oscillating and
exponentially relaxing signal x(t > 0) = exp(i/)exp(ix0t – Rt), which
has a pure absorption Lorentzian spectrum
~xðxÞ ¼ ðR=2pÞ=ððx�x0Þ2 þ R2Þ, according to Eq. (17). This equa-
tion gives x(t < 0) = exp(i/)exp(ix0t + Rt) by setting X0 = +1. The
same expression can be found by using Eq. (18). The relaxation
process appears to be reversed at the negative moments of the
time: the signals is building up over time when t e [�1, 0], while
it is damped down when t e [0, +1]. On the contrary, the preces-
sion frequency x0 and phase / are the same at negative and posi-
tive moments of the time.

The symmetry that Eq. (18) expresses allows to artificially dou-
ble the number of samples in the data-set. This is now routinely
employed in magnetic resonance imaging to speed up data acqui-
sition [15]. In spectroscopy, it was combined with the linear pre-
diction to estimate spectra in the case where signals could be
measured at t = 0 and so where their phase / was known [58].

When / is indeed known, samples y�n calculated at the negative
moments of the time t�n = �tn according to

y�n ¼ expð2i/Þy�n ð19Þ

can be added to the set of yn (1 6 n 6 N) and the problem of extrap-
olation of the signal y(t) determined within [t1, tN] into [0, t1] is
effectively converted into that of interpolation of the signal deter-
mined on [�tN, �t1] and [t1, tN] into [�t1, t1], discussed in the previ-
ous section.

Unfortunately, / usually depends on numerous experimental
factors and so is rather difficult to establish analytically. In partic-
ular, in the situation considered here, i.e. when the initial part of
the FID-signal cannot be measured, the phase / will be unknown.
If so, the interpolation method described above cannot be applied
direct to x(t). Nevertheless, as x(t) is a band-limited function of the
spectral width X0, the function f(t) = |x(t)|2 is also band-limited,
with the spectral width 2X0. Moreover Eq. (18) implies that for
any time:

jxð�tÞj2 ¼ jxðtÞj2 ð20Þ

and so we can construct, noise-impaired, samples g�n and gn of f(t)
for negative t�n and positive tn (1 6 n 6 N) moments of the time,
respectively, according to

g�n ¼ gn ¼ jynj
2 ð21Þ

and interpolate thus constructed samples of the function f(t) in the
interval [�t1, t1], by setting sp regularly over the interval
[�tN � 6ds, tN + 6ds] and X = Xs = 1.1 � 2X0. It is then possible to
calculate the intensity of the FID-signal x(t) in the interval [0, t1],
as jxðtÞj ¼

ffiffiffiffiffiffiffiffi
f ðtÞ

p
, without having to determine /.

There is, though, an additional difficulty: the noise dfn of the
constructed samples gn = fn + dfn – inherited from the noise dxn of
the experimentally measured samples yn’s through the expression
fn = |xn|2 – is neither zero-average nor Gaussian. The mean value
and the standard deviation of gn are, respectively:

EðgnÞ ¼ hgni ¼ jxnj2 þ 2r2 ð22Þ

VarðgnÞ ¼ hðgn � hgniÞ
2i ¼ 4r2ðjxnj2 þ r2Þ ð23Þ

Moreover the noise dfn is correlated: as g�n = gn, df�n = dfn. Therefore,
according the Bayesian theory, the fit of Eq. (7) corresponds no
longer to the minimising of Eq. (8).

The probability function p(gn) of the signal gn = |xn + dxn|2 (dot-
ted line in Fig. 2a and b) with the ratio |xn|/r differs strongly from
the Gaussian probability function pgauss(gn) (solid line in Fig. 2a
and b), i.e.

pgaussðgnÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8pr2ðjxnj2 þ r2Þ
q exp �ðgn � jxnj2 � 2r2Þ2

8r2ðjxnj2 þ r2Þ

 !
ð24Þ

of the same mean value and standard deviation r when |xn|/r� 5.
Yet the latter can be viewed (see Fig. 2c and d) as a reasonable
approximation of the former when |xn|/r P 5. Thus the noise dfn

can be viewed as Gaussian with the mean value 2r2 and the stan-
dard deviation 4r2(|xn|2 + r2) when the signal x(t) is measured with
a relatively good signal-to-noise ratio (bigger than ten).

Given the constructed samples g�n and gn are located symmet-
rically with respect to zero, it is convenient to place sp’s also sym-
metrically with respect to zero:

sp ¼ . . . ;� 3
2 ds;� 1

2 ds; 1
2 ds; 3

2 ds; . . . so that ap will also be sym-
metrical in the fitting procedure. It then turns out possible to deal
with the positive sp, within [0, tN + 6ds] only and to number them
as follows

sp ¼ p� 1
2

� �
ds p ¼ 1; . . . ; Psup ð25Þ

where Psup = int(1.1X0tN/p) + 6 and sp ¼ p p� 1
2

� �
=X0. The approxi-

mation of Eq. (7) can then be written as

f ðtÞ �
XPsup

p¼1

ap sinc
X
2
ðt � spÞ þ sinc

X
2
ðt þ spÞ

� �
ð26Þ

The advantage of this new formulation is that the values of gn, for
only positive tn (i.e. 1 6 n 6 N) and impaired by uncorrelated noise
are now to fit with the sum of the right-hand side of Eq. (26).

So long as the Gaussian approximation of dfn is valid, the max-
imum likelihood coefficients aP (1 6 p 6 Psup) are given by the gen-
eralised least-square minimisation:

Minap ;ð16p6PsupÞ
XN

n¼1

�
gn � 2r2 �

PPsup
p¼1ap sinc X

2 ðtn � spÞ þ sinc X
2 ðtn þ spÞ

� ���� ���2
4r2ðjxnj2 þ r2Þ

ð27Þ

Approximating the unknown xn by the measured yn, Eq. (27)
becomes

Minap ;ð16p6PsupÞ
XN

n¼1

�
jynj

2 � 2r2 �
PPsup

p¼1ap sinc X
2 ðtn � spÞ þ sinc X

2 ðtn þ spÞ
� ���� ���2

4r2ðjynj
2 þ r2Þ

ð28Þ
The analytical solution of Eq. (28) is given by
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Fig. 2. Numerical estimate of the probability density p(g) of the function g = |xn + dxn|2 (dotted line), where xn stands for a signal impaired by the Gaussian noise dxn of the
standard deviation r and the ratio |xn|/r equals to (a) 0, (b) 2, (c) 5 and (d) 10, and Gaussian probability function pgauss(g) (solid line, Eq. (24)) of the same mean value and
standard deviation.
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Af ¼ Mt
f K�1Mf

	 
�1
Mt

f K�1ðG� 2r2LÞ; ð29Þ

where

Mf ¼
sincXðt1�s1Þ

2 þsincXðt1þs1Þ
2 ; ���; sincXðt1�sPsupÞ

2 þsincXðt1þsPsupÞ
2

..

. ..
.

sincXðtN�s1Þ
2 þsincXðtNþs1Þ

2 ; ���; sincXðtN�sPsupÞ
2 þsincXðtNþsPsupÞ

2

0
BB@

1
CCA
ð30Þ

K ¼
jy1j

2 þ r2 0 0

0 . .
.

0
0 0 jyNj

2 þ r2

0
BB@

1
CCA; G ¼

jy1j
2

..

.

jyNj
2

0
BB@

1
CCA;

L ¼
1
..
.

1

0
B@

1
CA; Af ¼

a1

..

.

aPsup

0
BB@

1
CCA ð31Þ

and the inverse matrix ðMt
f K
�1Mf Þ�1 is, in practice, replaced by a

truncated singular value approximation to assure against possible
ill-conditioning. The subscript f is to indicate that we now deal with
reconstruction of the function f(t) = |x2(t)|, rather than x(t) itself, as
opposed to what was done in the interpolation method described in
the previous section.

To interpolate f(t) at a given t of [�tN, tN], a column vector Vf(t) is
constructed according to
VðtÞ ¼

sinc Xðt�s1Þ
2 þ sinc Xðtþs1Þ

2

..

.

sinc Xðt�sPsupÞ
2 þ sinc XðtþsPsupÞ

2

0
BB@

1
CCA ð32Þ

and the value of the interpolated signal sf(t) and the standard devi-
ation r0f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
hjds2

f ji
q

of its noise dsf, inherited from the Gaussian noise
dx, can then be obtained respectively as

sf ðtÞ ¼ Vt
f ðtÞAf ¼ Vt

f ðtÞ Mt
f K�1Mf

	 
�1
Mt

f K�1ðG� 2r2LÞ ð33Þ

and

r0f ðtÞ ¼ 2r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vt

f ðtÞ Mt
f K�1Mf

	 
�1
Mt

f K
�1Mf Mt

f K
�1Mf

	 
�1
Vf ðtÞ

r
ð34Þ

Finally the amplitude of the signal x(t) and the standard deviation of
its noise can be calculated as

sjxjðtÞ ¼
ffiffiffiffiffiffiffiffiffiffi
sf ðtÞ

q
ð35Þ

and

r0jxjðtÞ ¼
r0f ðtÞ

2
ffiffiffiffiffiffiffiffiffiffi
sf ðtÞ

p ð36Þ

Unlike the interpolation method described in the previous sec-
tion, this extrapolation method is no longer linear. Furthermore the
noise level r intervenes explicitly in the calculation of the value of
the interpolated signal and so has to be determined in advance. In
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Fig. 3. Functions of Eqs. (a) (37) and (c) (38) and their Fourier-transformations, (b) and (d) respectively.
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practice this can be done readily and surely by applying the meth-
od proposed previously [20] to the experimentally acquired signal
itself. There r was estimated by measuring the standard deviation
of the raw (complex) data from their best fit by a band-limited car-
dinal series.

Finally the noise level r0jxjðtÞ of the extrapolated amplitude of
the experimentally acquired signal x(t) depends not only on its
form but also on the moments of the time tn at which it was sam-
pled by the ADC.
3. Results and discussion

3.1. Performance of the interpolation method

To examine its performance, the method was applied to inter-
polate computer-simulated noise-free signals modelled as band-
limited functions

xðtÞ ¼ sinc2 pt
2t0

� �
ð37Þ

and

xðtÞ ¼ 3
5

cos p t
t0

� �
þ 2

5
cos

pt
2t0

� �
ð38Þ

of the spectral width X0 = 2p/t0 and the Nyquist period equal to t0,
the latter standing here for the time unit and will be set to one in all
that follows. These two functions are somewhat reminiscent of echo
signals (see Fig. 3a and c respectively), with a broad spectrum (see
Fig. 3b) in the case of the former and with a spectrum consisting of
four infinitely narrow spectral lines (see Fig. 3d) in the case of the
latter. Both functions take the value of one at t = 0.

Fig. 4 shows the result of the reconstruction of the continuous
signal of Eq. (38) within the interval [�5t0, 5t0] from its forty reg-
ular samples within the intervals [�3t0, �t0] and [t0, 3t0], either
noise-free (on the left) or impaired by Gaussian noise of the stan-
dard deviation r = 0.001 (on the right), by the cardinal series meth-
od (on the top), Lagrange interpolation as described in literature
[11] (in the middle) or modified by us (on the bottom). The linear
prediction cannot be applied here as the absence of samples within
the interval [�t0, t0] breaks regularity of the sampling. The contin-
uous signal (dotted lines in Fig. 4a and b) was precisely recon-
structed (solid lines in the same figure) within the interval [�3t0,
3t0] by the cardinal series method even in the presence of noise.
Contrariwise our method fails to reconstruct the signal at t smaller
than �3t0 and bigger than 3t0 and so proves unsuitable for extrap-
olating signals. The Lagrange interpolation as described in litera-
ture, on the other hand, was inept to reconstruct the analogue
signal even within the intervals [�3t0, �t0] and [t0, 3t0] of regular
sampling and in the absence of noise (Fig. 4c and d). We see at least
two reasons for this failure: there are no samples in the vicinity of
t = 0, whilst it was suggested to be a prerequisite [11]; moreover,
the method imposes no condition on the spectral width of the sig-
nal to reconstruct, which, we believe, is essential for the approxi-
mation to converge. The latter aspect will be discussed in detail
in Appendix, where we also propose a modification of the Lagrange
method that takes into account the spectral width of the signal.
The modified version of the Lagrange method is fairly satisfying
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Fig. 4. Interpolation (continuous line) of the continuous signal (dot-dashed line) of Eq. (38), either noise-free (on the left) or impaired by Gaussian noise of standard deviation
r = 0.001 (on the right), from its forty regular samples (filled circles) within the intervals [�3t0, �t0] and [t0, 3t0] by using cardinal series (on the top) or the Lagrange
interpolation method as described in literature (in the middle) and as modified by us (on the bottom).
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when allied to the noise-free signal within the interval [�3t0, 3t0]
(Fig. 4e), but turns out to be unstable with respect to noise (Fig. 4f).

We put our method to further tests to be able to assess its sta-
bility. In the first test, the functions of Eqs. (37) and (38) were sam-
pled regularly, at the frequency XS set to ten times the spectral
width of the functions X0, within the domains of the type
[�tinf � Dt, �tinf] [ [tinf, tinf + Dt], where varied tinf P 0 and Dt P 0,
and were interpolated into the intervals [�tinf, tinf].

The difference |sx(t = 0) � 1| between the value of the noise-free
signals of Eqs. (37) (see Fig. 5a) and (38) (see Fig. 5b) obtained by
interpolation and their theoretical value – which reflects the
intrinsic bias of the method – were calculated at t = 0 as a function
of tinf and Dt varied within [0, 5t0] and [0.1t0, 100t0], respectively.

Left of the darker solid line in Fig. 5a and b, the bias does not ex-
ceed 1%, which, we think, is very satisfying, as this will usually cor-
respond to the relative error with which one can reasonably hope
to measure NMR-signals. Not surprisingly, for the intervals
[�tinf, tinf] narrower than the Nyquist period, i.e. for tinf < t0/2, this
bias decreases below 10�5, becoming comparable with the round-
ing error encountered when the cardinal series was used to filter
signals sampled over continuous intervals [46].

The width 2tinf of the interval into which the signals can be
interpolated turns out to strongly depend on the extent Dt of inter-
val over which the signal was sampled. For small Dt, the interpola-
tion was successful for the width 2tinf hardly broader than the
Nyquist period of the signals. When Dt increases, i.e. when there
are more available samples of the signal and so more information
about it, it can be interpolated into intervals whose width is several
times the Nyquist period, i.e. tinf	 t0/2.

A closer look reveals dependence of the method’s bias on the
form of the signal. The signal of the form of Eq. (37) could be inter-
polated into an interval up to almost ten times broader than its
Nyquist period, i.e. for tinf/t0 � 5, when Dt = 100t0 (see Fig. 5a).
The signal of the shape given by Eq. (38), contrariwise, could be
interpolated into an interval no broader than five times its Nyquist
period, i.e. for tinf/t0 � 2.5, when Dt P 3t0 (see Fig. 5b); and this
limit could not be raised by further increasing Dt. Note (Fig. 5a)
that a similar feature occurred when Dt was raised to 20t0 or
higher.

In the context of regular sampling of band-limited signals the
Nyquist period is often associated with the maximal sampling per-
iod that allows to reconstruct the continuous signal from its sam-
ples. The results of the tests summed up in Fig. 5a and b shows that
the continuous signal can actually be reconstructed from its irreg-
ular samples some of which located several Nyquist periods apart
from one another provided that there are enough other samples
placed closer to each other than the Nyquist period.

We also studied the dependence of the noise amplification
r0x=r, defined by Eq. (15), on tinf and Dt. When the interval into
which the signal has to be interpolated is narrower (see Fig. 5c)
than one Nyquist period, and when Dt is slightly higher than t0,
then r0x=r 6 1, which means that the interpolated signal is im-
paired by noise of lower level than the experimentally acquired
signal from which it was interpolated. Therefore, along with
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Fig. 5. Difference |sx(t = 0) � 1| between the value of the functions of Eqs. (a) (37)
and (b) (38) obtained by interpolation and their theoretical value at t = 0, one, as a
function of tinf and Dt varied within [0, 5t0] and [0.1t0, 100t0], respectively, for
Xs ¼ 10X0; (c) noise amplification r0x=r as a function of the same parameters.
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Fig. 6. Difference |sx(t = 0) � 1| between the value of the functions of Eqs. (a) (37)
and (b) (38) obtained by interpolation and their theoretical value at t = 0, one, as a
function of tinf and Xs varied within [0, 5t0] and [0.1X0, 100X0], respectively, for
Dt = 10t0; (c) noise amplification r0x=r as a function of the same parameters.
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interpolation, the signal benefits from the filtering properties of the
cardinal series established in the past [20,46]. When the interpola-
tion interval increases, noise propagated through the interpolation
procedure rises quickly by orders of magnitude. Thus noise ampli-
fication appears as another possible factor limiting the width of the
interpolation interval. One can assume that the interpolation will
be successful in the area left of the solid line in Fig. 5c, where
r0x=r 6 100, given the signal-to-noise ratio of experimentally
acquired signals seldom exceeds ten thousand. Here once again
broader interpolation intervals can be achieved by broadening
Dt; and for Dt = 100t0 the interpolation interval can be as broad
as four Nyquist periods.

Clearly, oversampling the signal in the domain [�tinf � Dt,
�tinf] [ [tinf, tinf + Dt] is absolutely necessary for being able to inter-
polate it into an interval [�tinf, tinf] broader than its Nyquist period.
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Fig. 7. Difference |sx(t = 0) � 1| between the value of the function of Eq. (37)
obtained by extrapolation and their theoretical value at t = 0, one, as a function of
tinf and Dt varied within [0, 5t0] and [0.1t0, 100t0], respectively, for (a) XS = 4X0 and
(b) XS = 100X0.

Fig. 8. Evolution of noise amplification r0x=r as a function of Xs while tinf was set to
t0, 2t0 and 3t0 and Dt = 10t0. The graph is an arrangement of the three planar cross-
sections (dotted lines in Fig. 6c) of the diagram of Fig. 6c. Dotted lines to guide the
viewer have tangent of �1/2.
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In the second test, to understand the influence of the sampling
frequency XS, we studied the bias of the interpolation of the signals
of the form of Eqs. (37) and (38) as a function of the interpolation
interval tinf, varied within [0, 5t0], at different sampling frequencies
within [0.1X0, 100X0 ], while Dt was set to 10t0 (Fig. 6a and b
respectively). Fig. 6c shows the noise amplification r0x=r as a func-
tion of the same parameters. The charts for both types of signal are
similar. When XS < X0, the signal is under sampled and any at-
tempt to interpolate it fails. When XS > 3X0, the signal is oversam-
pled enough for interpolation to succeed. Naturally, there is then
still a certain limit to how wide the interval where samples of
the signal were not available can be for interpolation to be success-
ful. This limit does not depend on XS but on the form of the pro-
cessed signal: it is equal to eight Nyquist periods for the signal of
Eq. (37) (Fig. 6a) and five Nyquist periods for the signal of Eq.
(38) (Fig. 6b). Finally, when X0 < XS < 3X0, narrowness of tinf be-
comes crucial to the success of interpolation.

Finally we investigated the performance of our interpolation
method applied to the signal of Eq. (37) as a function of Dt and tinf

when the sampling frequency XS is comparable with (XS = 4X0, Fig
7a) or much higher (XS = 100X0, Fig 7b) than the spectral width of
the signal X0. The case of an intermediate value of the sampling
frequency, i.e. XS = 10X0, was shown in Fig. 5a. When Dt < 3t0,
i.e. when only a very limited number of samples are available, in-
crease in XS improves tremendously the quality of interpolation.
When Dt > 3t0, on the other hand, all the three charts are almost
identical. Thus, except for extremely truncated signals, raising XS

further than 4X0 proves to have no effect on either the interpola-
tion exactitude or the maximal width of the interpolation interval.
Nevertheless Fig. 6c shows that, when the interpolation is possible,
a rise in XS results in substantial decrease of r0x=r. Fig. 8 shows
that r0x=r then depends on the sampling frequency as X�1=2

S inde-
pendently of tinf. Thus, raising XS results in lowering the noise level
by a factor of

ffiffiffiffiffiffi
Xs
p

and can be useful when acquiring signal with a
low signal-to-noise ratio.

3.2. Performance of the extrapolation method

We wanted to compare our extrapolation method with that of
the linear prediction. To be able to do so, we had to choose a reg-
ular data-set. Fig. 9 shows the reconstruction of the continuous sig-
nal of Eq. (37) within the interval [0, 3t0] from its twenty regular
samples within the interval [t0, 3t0], either noise-free (on the left)
or impaired by Gaussian noise of the standard deviation
r = 0.001 (on the right), by the cardinal series method (on the
top) and by one of the numerous linear prediction methods [21–
25], i.e. Iterative Quadratic Maximum Likelihood (IQML) (on the
bottom). The IQML was chosen as it was shown to be the most sta-
ble and reliable among the linear prediction methods for calculat-
ing NMR-spectra of biological polymers [25]. Moreover, this
particular linear prediction method is the only one that sets all
the parameters of the prediction model by a least-square fit of
the data, which is the proper way of dealing with the inverse prob-
lems from the point of view of the Bayesian theory when the data
is affected by Gaussian noise [55,56].

The cardinal series method extrapolated the initial part of the
FID-like signal beautifully (Fig. 9a) even in the presence of noise
(Fig. 9b). The IQML also proved highly successful in extrapolation
the initial part of the noise-free signal (Fig. 9c), yet failed miserably
when applied to the signal impaired by a moderate noise (Fig. 9d).
Thus we recover here the conclusion, drawn in the past [30], that
the linear prediction cannot be viewed as a reliable mean of
extrapolation of the signal in the time domain, even though it does
alleviate considerably the adverse effects of truncation on the
signal in the frequency domain.
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Fig. 9. Extrapolation (solid line) of the continuous signal (dot-dashed line) of Eq. (37), either noise-free (on the left) or impaired by Gaussian noise of standard deviation
r = 0.001 (on the right), from its twenty regular samples (filled circles) within the interval [t0, 3t0] by using cardinal series (on the top) and the IQML method (on the bottom).
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We put our extrapolation method, described in Section 2.3, to
the tests similar to those of the previous section. In the first
test, the functions of Eqs. (37) and (38) were sampled regularly
within the intervals [tinf, tinf + Dt] at the frequency XS = 10X0 and
extrapolated into the intervals [0, tinf]. Thus modelled signals have
real spectra (see Fig. 3) and so satisfy the conditions of the meth-
od’s applicability, and noise-free. Nevertheless it is necessary to
specify a noise level r, as it now intervenes in the calculation
(see Eq (28)). In what follows, we report tests performed for
r = 0.0001, a value similar to that encountered in our experiments
(see Section 3.3).

The charts of Fig. 10a and b show evolution of the bias
|s|x|(t = 0) � 1| of extrapolation of the model signals as a function
of tinf and Dt gradually varied within [0, 2.5t0] and [0.1t0, 100t0]
respectively, while those of Fig. 10c and d show the noise amplifi-
cation r0jxj=r. The charts in Fig. 10a and b reveal patterns similar to
those of Fig. 5a and b, though, scaled down by a factor of two or so
in the tinf direction. This comes as no surprise given the close rela-
tionship between the extrapolation and interpolation methods.
The extrapolation method consists in transforming the problem
of extrapolation of a signal with the spectral width X0 into the
problem of interpolation of its squared norm, of the spectral width
2X0, and so a contraction by a factor of two is to be expected. The
difference between the expected and actually observed scaling fac-
tors can be accounted for by difference in the inherent dependence
of the interpolation and extrapolation methods on the form of the
processed signal. The charts in Fig. 10c and d confirm that the
noise-level amplification of the extrapolation method also depends
on the shape of the signal. This amplification is smaller that one in
a upper left zone in Fig. 10c and d, which means that, along with
extrapolation, the signal will continue to benefit from filtering
properties of the cardinal series.

Other tests, on other types of band-limited signal with r rang-
ing from 0.0001 to 0.1 (not shown here), confirm the general char-
acter of these observations, which can be summed up as follows:
while the interpolation method requires that XS > 3X0, the extrap-
olation methods necessitates that XS > 6X0; the maximal tinf for
which extrapolation is successful is about two times smaller than
that for which interpolation is possible. In general as long as the
domain Dt over which the signal was sampled exceeds a few Ny-
quist periods t0, the signal can be extrapolated into the interval
[0, tinf] of the width tinf at least as broad as t0/2, which ranges here
between 1.3t0 for signal (38) and 1.8t0 for signal (37) whatever sys-
tematic bias or noise amplification are considered (bold lines in
Fig. 10). This is quite remarkable, as this means that the absolute
value of the signal can be interpolated into the interval [�tinf, tinf]
seven times of its own Nyquist period t0/2.

3.3. Application of the extrapolation method to experimentally
acquired signals

Finally, to further underline usefulness and explore capacity
and limits of our extrapolation method we applied it to experimen-
tally acquired signals.

Twenty-one water-proton FID-signals of a 60 ml sample of the
10�2 mol/l aqueous solution of CuSO4 were generated by the
experimental scheme of Fig. 11 in which magnetic field gradient
was incremented in 21 steps from one experiment to another to
gradually broaden the spectrum of thus defocused signal from
300 Hz to 10 kHz. The signal-to-noise ratio was not less than
5000. We assured that all signals were sampled at least ten times
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Fig. 10. Difference |s|x|(t = 0) � 1| between the value of the signals of Eqs. (a) (37) and (b) (38) obtained by extrapolation and their theoretical value at t = 0, one, as a function
of tinf and Dt varied within [0, 2.5t0] and [0.1t0, 100t0], respectively, for Xs = 10X0; noise amplification r0jxj=r of the signals of Eqs. (c) (37) and (d) (38) as a function of the same
parameters. The zones of utter failure of the method (leading to negative extrapolated squared signal intensity) are coloured in black.

Fig. 11. Pulse sequence used to measure signals of the aqueous solution of CuSO4;
gradient allowed to change at will the spectral width of the signal.
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more frequently than required by the Nyquist criterion by setting
the sampling frequency to 100 kHz. The initial 330 ls long part
of each of the FID-signals was interfered by the parasite signal
stemming from the sample-holder and so had first to be chopped
off and then extrapolated from the rest of the signal. Fig. 12a shows
the result of extrapolation of three of the 21 signals into the initial
330 ls as well as the three truncated experimentally acquired sig-
nals themselves. As one would expect it from the signals measured
on the same sample, all extrapolated signals have the same ampli-
tude at t = 0, associated here as usual with middle of the last RF-
pulse in the experiment.

Fig. 12b shows the intensity of the first sample (at t = 330 ls) of
the truncated FID-signals as well as the intensity of the extrapo-
lated signals at t = 0 as a function of the spectral width of the sig-
nal. The former, as could be expected, decreases quickly when the
spectral width increases, while the latter stays unchanged until the
spectral width reaches the value of 5 kHz, thus confirming
the most satisfying performance of the extrapolation method.
The method fails when applied to signals with spectra broader
than 5 kHz and so with the Nyquist periods smaller than 200 ls.
This corresponds to the ratio of the length of the interval into
which the signal is to extrapolate and the signal’s Nyquist period
of 1.65 and is in good accord with the results of Fig. 10, where
the extrapolation method failed when tinf exceeded a certain
threshold within the interval 1.3t0 6 tinf 6 1.8t0 for Dt bigger than
few t0.
Finally Fig. 13 shows the result of extrapolation of the initial
600-ls long parts of the water-proton FID-signals – acquired in
single-pulse experiment – of the same quantity of distilled water
in a flask either filled or not with glass beads of various diameters.
The signals, of the spectral width of 1 kHz and 300 Hz, were both
sampled at 100 kHz. Here again, despite the significantly faster de-
crease of the signal in the porous system compared with that of the
pure water, the amplitudes of the two extrapolated signals show a
relative discrepancy of only 1.6%. This confirms the ability of our
extrapolation method to compensate for the effects of magnetic-
field inhomogeneity and thus to allow precise measurement of
amount of water in porous media.



a

b  
 

Fig. 12. (a) FID-signals of the spectral width of Df = 300 Hz, 1 kHz and 4 kHz
extrapolated into [0, 330 ls] (solid line) from their regular samples within [330 ls,
3000 ms] (white circles) measured with the pulse sequence of Fig. 10; (b)
intensities of the first sample (empty circles) of the truncated FID-signals measured
at t = 330 ls in the experiments of Fig. 10 and those determined at t = 0 by
extrapolation (filled circles) as a function of the spectral width.

Fig. 13. Intensities of the measured (white circle) and extrapolated (solid line) FID-
signals of the same quantity of distilled water in a flask either filled or not with
glass beads of various diameters.
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4. Conclusions

We proposed two methods of restoring missing parts of incom-
plete NMR-signals dominated by effects of field inhomogeneity.
Unlike most NMR-data processing techniques currently used in
spectroscopy, these methods do not rely on any model of NMR-
signal and require nothing but the signal to be a band-limited
function and its available parts oversampled.

One of the methods allows to interpolate the incomplete signal
into intervals many times broader than its Nyquist period. Another
permits to extrapolate the amplitude of the initial missing part of
the refocussed FID-signal. The both methods necessitate that do-
mains in which the signal is to be reconstructed are juxtaposed
with those where it is oversampled. The broader are the domains
of oversampling, the better is the performance of the methods. Per-
formance of the methods were shown by applying them to exper-
imentally acquired signals. Our methods proved much more stable
than those of the linear prediction or Lagrange interpolation.

We believe that, for NMR-studies in civil engineering, our meth-
ods may be useful alternatives to those used most often in NMR-
spectroscopy.

5. Experimental

All numerical simulations, calculations and data-processing
algorithms were coded in both FORTRAN 95 and Scilab program-
ming languages.

The water-proton NMR-experiments were carried out on a
60 ml sample of the 10�2 mol/l aqueous solution of CuSO4 and on
a 25 ml sample consisting of glass beads of diameter ranging be-
tween 128 and 166 lm bunched together and immersed in dis-
tilled water at a vertical Bruker 24/80 Avance DBX MRI
spectrometer equipped with a 20 cm birdcage RF-coil and operat-
ing at the field 0.5 T with maximal gradient of 5 G/cm.
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Appendix A. Lagrange Interpolation with spectral-band control

In the adaptation [11] of the Lagrange interpolation [59], the
interval [t1, tN] over which a set of samples xn is collected at the
moments of the times t1 < t2 < ���tN is rescaled into the non-
dimensional interval [�p, p] by the affine transformation

tn ! ~tn ¼
2p

tN � t1
tn �

tN þ t1

2

� �
ðA1Þ

The signal to reconstruct is modelled by the trigonometric series

xðtÞ ¼
XN=2�1

k¼�N=2

ak expðik~tÞ ðA2Þ

By setting z ¼ expði~tÞ, Eq. (A2) can be expressed as

xðtÞ ¼ z�N=2
XN�1

k¼0

ak�N=2zk ¼ z�N=2 � PðzÞ; ðA3Þ

where P(z) is a polynomial of the degree N�1 of the complex argu-
ment z which has to be adjusted so that PðznÞ ¼ xðtnÞ � zN=2

n for
zn ¼ expði~tnÞ. Finally we obtain an efficient reconstruction
expression

xðtÞ ¼ z�N=2
XN

n¼1

xðtnÞzN=2
n

YN

j¼1;j–n

z� zj

zn � zj
ðA4Þ

It is by using this relationship that Fig. 4c and d were obtained.
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The band-width of the reconstructed signal can be determined
by introducing (A1) into (A2):

xðtÞ ¼
XN=2�1

k¼�N=2

ak exp ik
2p

tN � t1
t � tN þ t1

2

� �� �
ðA5Þ

Hence the oscillation frequencies of the complex exponentials used
for reconstruction are regularly spread over the spectral band
[�Dx/2, Dx/2] with

Dx ¼ 2p N
tN � t1

ðA6Þ

In the example of Fig. 4 of the Lagrange interpolation, the spectral
width of the approximation function was made much wider than
the spectral width of the signal, i.e. Dx = 6.7X0. This, no doubt, took
its toll of quality of the interpolation.

As an improvement, we suggest to take into account the true
spectral band of the signal by replacing Eq. (A1) by

tn ! ~tn ¼
X0

N
tn �

tN þ t1

2

� �
ðA1bisÞ

So long as the mean density N/(tN � t1) of samples in [t1, tN] is high-
er than the Nyquist frequency X0/2p, this relation will transform
the interval [t1, tN] into an interval inside [�p, p], and we can
continue to use Eq. (A4) being sure that the spectral width of the
approximation function will be set exactly to that of the signal to
interpolate. It is by using this relationship that Fig. 4e and f were
obtained.
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